Graph Based Database Generation from Query Constraints

Chun Wang
University of Michigan - Ann Arbor
Ann Arbor, Michigan
chunwc@umich.edu

1 PROBLEM DESCRIPTION

Our group is working on solving constraint satisfaction problems
(CSP) to generate a database table. Consider a single table with
multiple rows and columns, where the actual data distribution is
unknown. Our goal is to generate a synthetic table that closely
resembles the distribution of the original table by utilizing queries
and their corresponding cardinality results (i.e., the number of
tuples that satisfy each query).
Find our project repo on: €© chunwangpro/CSP_Graph

1.1 Motivation

The task of database generation from queries is motivated from real-
world database testing. Selecting an appropriate database product is
a critical decision for commercial companies. However, due to the
confidential nature of their data, companies often face limitations
in using their datasets for public testing. A synthetic database,
generated based on historical query sets and results, could serve
as a practical solution. If this synthetic database produces query
results similar to those of the original confidential data, companies
could test the performance of various database products on the
simulated data without risking privacy breaches. This approach
enables organizations to identify the database product that best
meets their requirements while safeguarding sensitive information.

1.2 Inputs/Outputs

The system takes queries’ column index (e.g., 0, 1, ...), operators
(<,>, <, 2,=), values as inputs, where the cardinality is the label

during training. The mathematical expression for a query can be
represented as shown in Equation 1.

|O-colo <3|=12

Geol, <3 & Teor, < 5] =10

1

This information can be stored more efficiently in a computer in
the format shown in Table 1. For example, the first query implies
that there are 12 tuples in which the values in column 0 are less
than or equal to 3.

Table 1: Query Constraints Format

index cols ops vals cards

0 0 < 3 12
1 0,1 << 3,5 10

The output of the system is a synthetic database, which is gen-
erated by our learned model, that aims to satisfy those query con-
straints and has silimar distribution as the ground truth.

Wanning He
University of Michigan - Ann Arbor
Ann Arbor, Michigan
hwanning@umich.edu

Changwen Xu
University of Michigan - Ann Arbor
Ann Arbor, Michigan
changwex@umich.edu

1.3 Challenges and Contributions

Generally, a query may randomly sample k columns in a table with
n columns, where k = 1,2 and n > 2. Thus, each query represents a
marginal distribution containing partial information about the table.
The key challenge lies in utilizing these marginal distributions to
infer the joint distribution. As the number of queries increases (e.g.,
10°), the computational complexity increases exponentially, requir-
ing us to learn the data distribution as efficiently and accurately as
possible under limited time and memory constraints.

Our contributions are mainly focused on the following aspects:

e Proposed a GCN-based model to learn CDF;

e Achieved comparable performance to baselines on small-
scale queries;

e Successfully scaled to large query sets while maintaining
accuracy;

e Demonstrated controlled computational overhead.

1.4 Task Allocation

Our work is divided into several parts. Chun, as the team leader,
proposed the overall model idea and was mainly responsible for
the data preprocessing. Wanning was in charge of two baselines
of PGM and SMT. Changwen was responsible for the training and
hyperparameter optimization of the GCN model.

2 REFERENCE/RELATED WORK
2.1 Previous Researches

There are several mainstream methods for data generation.

The symbolic CSP-based approach [2, 7] translates Approximate
Query Processing (AQP) inputs into constraints with symbolic
variables. However, this method does not always guarantee the
generation of a unique database instance.

Conversely, the ILP-based approach [1, 5] formulates the cardi-
nality constraints as linear equations and employs standard integer
linear solvers to resolve them. While this approach provides exact
solutions, it incurs a significant time overhead, with resource de-
mands growing exponentially as the number of attributes increases.

Recent deep learning-based work [11, 13] utilizes a supervised
deep AutoRegressive model to obtain the probability density func-
tion (PDF). Nonetheless, these methods are primarily effective for
categorical data, exhibiting significant performance degradation
when applied to numerical data.

The methods of AQP and AR models are difficult to reproduce
in the short term without their open source code. So we implement
two ILP-based baselines using typical constraint satisfaction solver
(SMT) and least square optimizer (PGM), both of which will be
introduced in later part.

https://github.com/chunwangpro/CSP_Graph

2.2 New Model and New Approach in Our Work

In contrast to prior works, we not only propose a novel graph con-
volutional network (GCN)-based architecture but also introduce
a fundamentally different learning paradigm. While previous ap-
proaches focused on learning the probability density function (PDF)
through queries, we present a cumulative distribution function
(CDF)-based methodology. We demonstrate that this CDF-based
approach is better suited for large-scale numerical data applications,
offering more controllable computational complexity.

3 METHODOLOGY

3.1 Datasets

Wine dataset [3], which includes 6497 tuples and 13 feature columns
(containing all numeric types). For better visualization purpose, we
randomly select three float type features: fixed acidity (3.8 to 15.9),
volatile acidity (0.08 to 1.58) and citric acid (0 to 1.66).

Census dataset [8], which includes 48,000 tuples and 15 feature
columns (containing numeric, string and categorical types). We
apply the same pipeline here by picking two integer-type features:
age (ranging from 17 to 90) and fnlwgt (final weight, ranging from
12,000 to 1.49 million), and one categorical feature: education level
(contains 16 unique classes).

The two selected datasets encompass diverse data types, in-
cluding integers, floating-point numbers, and categorical variables.
Specifically, we utilize the large-scale Census dataset and the medium-
sized Wine dataset. The heterogeneous nature and varying scales
of these datasets ensure comprehensive evaluation of our model’s
performance and enhance the generalizability of our experimental
findings.

Given the transparent nature of the dataset and our model’s
query-based input mechanism, we also need to generate appropriate
query sets. We randomly sampling values from the dataset and
applying the < operator across columns to construct queries and
obtain their corresponding cardinalities. The query set size ranges
from 1 to 10°. This range was specifically chosen for comparative
analysis, as our baseline models are limited to small-scale samples,
while our proposed approach demonstrates scalability to larger
query sets.

3.2 Data Preprocessing

In the preprocessing phase, we focus on handling the query set.
Initially, we normalize query cardinalities by computing selectivity
(probability) through division by the table cardinality m. Subse-
quently, to address the variable-length nature of queries—which are
randomly sampled from either one or two columns as illustrated
in Equation 1—we standardize their dimensionality to match the
table’s column count. This standardization is achieved by utilizing
the infinity symbol to denote unspecified columns in the query,
as formalized in Equation 2. Here, the original dataset table has
dimensions (m, n), where P represents the Probability Density Func-
tion (PDF) and F represents the Cumulative Distribution Function
(CDF), where each CDF corresponding to a query constraint.

F(3,00) = P(x £ 3,y <) = |01, < 3& o1 < 0| =12/m
F(3,5) =P(x <3,y <5) = |ogp, <3& 00, <5/=10/m

Chun Wang, Wanning He, and Changwen Xu

Furthermore, as the CDF values now have a uniform length of n,
we stack them along with their selectivity vertically, resulting in a
matrix (nested 2D array) with shape (query_size,n + 1), as shown
in Equation 3. Finally, given F(3,) = F(3, max_2), we replace the
infinity symbol in the Right Hand Side of the matrix in Equation 3
with the maximum value of each respective column (max_i).

3 oo | F(3,00) 3 max_2 | 12/m
3 5| F(3,5) 3 5 | 10/m
© 9 | F(c0,9) | =| max_1 9 30/m ®3)

Thus, the right-hand side (RHS) is the final result of prepro-
cessing. With the infinity symbol replaced and a uniform format
established, the RHS now consists entirely of Float data type and
has a shape of (query_size,n + 1), where each row represents a

query.

3.3 GCN Model Architecture

In this work, we employ a Graph Convolutional Neural Network
(GCN) [6] architecture to model the cumulative distribution func-
tion (CDF) within a multi-dimensional query space. A simple graph
overview is shown in Figure 1. Each node in the graph uses its
n-dimensional coordinate as the node feature, which represent a
cumulative probability as Equation 4 where d is the dimension of
query space and x = [x1, Xz, - - - , Xg] is a point of multi-dimensional
space D.

Fx(x) =P(X1 < x1,X2 < x2,++,Xq < xg) (4)

The structural similarity between Equation 2 and Equation 4
enables direct integration of the first n columns from matrix Equa-
tion 3 into the graph structure as model inputs, while the final
column provides ground truth selectivity values as training labels.
This formulation demonstrates the natural compatibility of our
GCN architecture with CDF learning, as it inherently aligns with
the query set structure. The nodes participating in the query set are
color-coded to represent their respective selectivity values. Addi-
tionally, the graph’s directed structure ensures that node activations
maintain the monotonic increasing property inherent to selectivity
values, as specified in Figure 1.

®— o 1 07

56—
04
03

0 3
02

Figure 1: Graph of the GCN model, with node (x;,y;) = P(X <
xi, Y < y;) is monotonically increasing along each dimension.

The training process is accompanied by the update of the graph.
As shown in Figure 2, the architecture consists of multiple graph
convolution layers (e.g., 3 layers), where each node aggregates
and transforms the information from their parent nodes through
directed edges. Then a Sigmoid Linear Unit (SiLU) activation would

Graph Based Database Generation from Query Constraints

Build Graph Graph Convolution Output

O
=) O-0O
O

SiLU(x) =x*u(x): a(x) =
’

T+ exp(—x)

Figure 2: Layer structure of the GCN model.

be applied. The final sigmoid activation layer ensures the output
values (query selectivity) are constrained within the range of 0 to 1.

As the query size increases, our model’s graph structure and
convolutional layer expand accordingly. Typically, the number of
trainable parameters ranges from 105 to 177 for 2D models, while
625 to 897 for 3D models. Although these parameter counts are
relatively small, further increases in graph dimensionality could
potentially result in exponential growth of the parameter space.

We employ the mean squared error (MSE) to quantify the loss
between model predicted selectivity and the true selectivity. Recog-
nizing that the queries do not traverse every node within the graph,
we apply masking to isolate and focus solely on the nodes involved
in the queries, thus semi-supervised training method.

4 EXPERIMENTS

4.1 Preparation

Our datasets, the preprocessing matrix Equation 3, has a shape
of (query_size,n + 1), we then split it into training and test sets
with a ratio of 0.8. Consequently, the training set has a shape of
(0.8 x query_size,n + 1), while the test set has a shape of (0.2 X
query_size,n + 1). The preprocessing method are adaptable to any
table shape, and we follow the same pipeline as we conduct experi-
ments on different datasets. Thus query_size ranges from 1 to 10°;
n = 2 for 2D-problem, and n = 3 for 3D-problem; m = 48K for Cen-
sus datasets and m = 6.5K for Wine datasets. For 3D visulization,
we assign the three selected features to the x, y, z-axis in the plots.
For the 2D-visualization, we only use the x, y-axis features.

Throughout the training process, we use Adam as the optimizer
to test hyperparameters in Table 2 and continuously monitor the
loss and save model checkpoints whenever a new lowest loss is
achieved, enabling us to retain the best-performing model parame-
ters for optimal results.

Table 2: Hyperparameters of the GCN model.

Hyperparameter Value

of hidden layers {1,2,3}

of hidden channels {4,8,16}

Epochs {1000,3000,5000}
Batch sizes {102, 104, 106}
Learning rate {1le-2,1e-3,1e-4}

4.2 Evaluation Metrics

After the model is trained, a synthetic database could be built given
the distribution learned by our model. To evaluate the synthetic
database built from our model, we calculate the Q-Error using Equa-
tion 5 for both train and test query sets.

¢,C
max(C,C) _

-Error = —
Q min(C, C)

[1, +c0) (5)

Where:

e (C is the actual cardinality (the true number of records re-
turned by the query);
o Cis the estimated cardinality;

Q-Error measures how well the synthetic database satisfies the
given constraints. It equals to 1 when the estimate is exactly correct.
Q-Error serves as a widely adopted metric in database evaluation,
providing an intuitive measure of the ratio between estimated and
actual cardinalities in database tables. However, this metric has
inherent limitations, particularly when dealing with small query
sets, where multiple distributions may simultaneously satisfy the
given constraints, making it challenging to identify the distribu-
tion closest to the ground truth. To address this limitation, we
additionally employ cross-entropy in Equation 6 to quantify the
similarity between our model-generated distribution and the actual
data distribution.

H(P,Q) = - Z P(x;) log Q(x:) (6)

Where:

e P(x;) is the true probability distribution of event x;,
® (Q(x;) is the predicted probability distribution of event x;.

Cross-Entropy quantifies the statistical divergence between the
generated instance and the original. A lower cross entropy indicates
a closer alignment between the two database instances. In order to
evaluate the computational complexity and scalability of the model,
we also record the time required to run the model at the same time.

4.3 Baseline Models

We employ two established algorithms as our baselines. The first
baseline utilizes the Z3 Satisfiability Modulo Theories (SMT) solver [4],
which implements a symbolic constraint satisfaction approach
through logical reasoning. In our SMT configuration, we formulate
the cardinality constraint as a soft constraint with a unit penalty,
enabling the solver to generate feasible solutions even when dealing
with high-dimensional variable spaces. This formulation provides
the solver with sufficient flexibility to address computational scala-
bility challenges.

Our second baseline leverages Probabilistic Graphical Models
(PGMs) [1], which constructs a generative distribution of the data-
base that satisfies multiple cardinality constraints. We implement
the PGM algorithm using the Sequential Least Squares Program-
ming (SLSQP) optimizer available in the SciPy package[10], which
provides robust numerical optimization capabilities for nonlinear
optimization problems. In both baseline setups, a three-hour time-
out is applied during evaluation to avoid excessive run times.

4.4 Evaluations

4.4.1 Training Error. We begin our analysis by examining the train-
ing error of the GCN model on the Census dataset (results for the
Wine dataset are presented in the Appendix). Figure 3 illustrates the
comparative analysis between the model-learned distribution and
the ground truth distribution for queries of size 1000, while Figure 6
presents the corresponding results for the 3D Census dataset.

Ground Truth

Model Prediction

Node Values

Figure 3: 2D visualization: Distribution learned by GCN
(right) compared to the ground truth (left), ascending along
both axes.

For query sizes less than or equal to 103, our GCN model achieves
consistently low training Mean Squared Error (MSE), with values
below 0.001 and reaching a minimum of 0.00046. Given that the
data is normalized to the range [0, 1], these results indicate an av-
erage prediction error of less than 3%, demonstrating strong model
fit to the training data. However, when the query size increases to
10% or beyond, the training MSE plateaus at approximately 0.18.
This performance degradation can be attributed to the increasing
sparsity of the high-dimensional parameter space as both query
size and model complexity grow, making convergence to the global
optimum substantially more challenging. These optimization diffi-
culties manifest in notable error margins in the final solutions.

It is worth noting that comparable MSE evaluations for the base-
line models (Z3 solver and SLSQP optimizer) are not available, as
these methods only return results upon successful convergence to
a solution that satisfies all constraints, rather than providing inter-
mediate or approximate solutions during the optimization process.

4.4.2 Q-error. As illustrated in Table 3, while both SMT and PGM
approaches achieve near-optimal performance with Q-Error val-
ues approaching 1 for small query sizes (10 and 100), they fail to
converge within the three-hour computational limit for queries
of size 1000 or larger. Although these traditional methods demon-
strate strong performance in scenarios with limited constraints,
they exhibit significant scalability limitations when confronted
with larger constraint space. However, the ability to handle a larger
number of constraints is crucial for solving real-world problems,
because incorporating more constraints increases the likelihood
of approximating the ground truth, provided that the problem re-
mains solvable. This argument is confirmed in our evaluation of
cross-entropy (Section 4.4.4).

In contrast, our GCN-based approach demonstrates robust per-
formance for queries up to size 10° in both training and testing

Chun Wang, Wanning He, and Changwen Xu

query set. When evaluated on the test set with limited query sizes
(10, 100), our model exhibits elevated errors, indicating suboptimal
generalization to unseen data under sparse constraint conditions.
However, this limitation is of minimal practical concern, as real-
world applications typically involve substantially larger query sets.
The model’s superior performance on larger, more representative
query sizes aligns well with practical deployment scenarios.

Note that for query sizes of 10 or larger, the Q-Error exhibits
an increasing trend with the number of queries. We attribute it
to the inherent limitations of our current GCN architecture in
modeling large-scale query constraints. However, It is important
to note here in the context of database generation, even Q-Error
values exceeding 10 represent relatively modest deviations, such
error margins are generally considered acceptable for practical
applications. This scalability challenge is fundamentally rooted in
the computational complexity of database generation from queries,
which is an NP-hard problem. For large-scale query constraints,
finding solutions that satisfy all constraints within a practical time
frame is computationally intractable. This theoretical complexity
barrier suggests that the observed performance degradation may
be inherent to the problem rather than solely a limitation of our
architectural choice.

Table 3: Q-Error on Census-2D: SMT and PGM use full queries,
whereas GCN is trained on 80% of the queries and the remain-
ing 20% are used for testing its generalization performance.

Model Query Median 75th 90th Mean

SMT 10! 1.0000 1.0000 1.0052 1.0052
102 1.0000 1.0000 1.0000 1.0001

PGM 10! 1.0000 1.0000 1.0054 1.0053
102 1.0013 1.0032 1.0075 1.0358
10! 1.1880 1.3412 1.4546 1.2293
102 1.7215 2.2244 3.5073 4.5222

3

GCN (train) 104 1.4937 2.0283 3.9394 3.4498
10 2.6611 6.1961 16.444 9.6984
10° 2.5124 5.7128 16.053 14.608
106 2.5018 57128 15993 14.222
10! 1078.0 1616.5 1939.6 1078.0
102 1.8586 3.0493 17.558 109.66
103 1.5270 2.0253 4.1350 2.7982

GCN (test)

104 2.6098 6.0058 18.028 14.141
10° 2.5207 5.8214 16.601 13.866
100 2.5229 5.7236 15925 13.984

To potentially mitigate these challenges, future work could ex-
plore more sophisticated Graph Neural Network architectures, such
as Graph Isomorphism Networks (GIN)[12] or Graph Attention Net-
works (GAT)[9], which might offer improved learning capabilities
for complex constraint satisfaction problems.

We further validate our approach by presenting additional experi-
mental results in the Appendix, including evaluations on Census-3D
and both 2D- and 3D- configurations of the Wine dataset. These
supplementary results demonstrate consistency with our primary
findings, indicating that our model successfully generalizes across

Graph Based Database Generation from Query Constraints

different datasets and dimensionalities. This comprehensive eval-
uation substantiates that our GCN-based approach offers a more
scalable solution compared to conventional methods.

4.4.3 Running Time. GCN also surpasses baseline methods in terms
of processing speed. We compare the run time of SMT and PGM
with the training time of GCN (the training time for GCN directly
corresponds to the time required to solve the CSP problem). SMT
and PGM are implemented on Intel i9 CPU, as these traditional
approaches are inherently sequential and cannot leverage parallel
computing architectures. In contrast, our GCN model can effec-
tively utilize the parallel processing capabilities of GPUs, and is run
on a single NVIDIA H100 GPU.

Although SMT and PGM are efficient for solving small query
sizes, they increase significantly with query size and fail to find
out the solution within three hours’ timeout when the query size
reaches 1000. In contrast, the training time for GCN increases much
more slowly than the baselines, only costing tens of seconds even
when the query size reaches 1 million. Note that we consistently
trained the model for 5000 epochs for every query size we experi-
mented with, so the actual training time needed for GCN could be
much lower than what is reported in Figure 4.

Meanwhile, the latency for model prediction with GCN is only
around 0.001s when the query size reaches 1 million. This rapid
inference capability indicates that once trained, our model can gen-
erate database instances with minimal computational overhead,
making it particularly suitable for real-world applications or sce-
narios. Therefore, our GCN model demonstrates its potential as a
scalable solution for database generation from query constraints.

a b

Run time (5)
7
|
I

10 g
Number of queries

10 o suT —— sr

o rom
— con l/ iy
4

w 0
Number of queries

Run time (s)
Run time (s)

Figure 4: Processing time versus number of queries on a
Census-2D, b Census-3D, ¢ Wine-2D, d Wine-3D. Our model:
GCN; Baseline model: PGM, SMT

4.4.4 Cross-Entropy. We further evaluated the model’s perfor-
mance in generating synthetic databases by calculating the cross
entropy. Figure 5 demonstrates that, even the two baselines achieves
near-optimal Q-Error performance in Table 3, their generated tables
have notably higher cross entropy, indicating greater divergence
from the true data distribution. This is because the constraint set is

too small for these models to accurately approximate the ground
truth. Moreover, the baseline shows limited improvement as the
number of queries increases. In contrast, our GCN-based model
maintains performance parity with the baseline for small query
sizes, but achieves significantly lower cross entropy values when
the query size exceeds 1,000.

This observation provides valuable insight into the relationship
between constraint satisfaction and distribution matching. We em-
ploy Q-Error to evaluate how well the model-generated data satis-
fies the given constraints, while cross entropy measures the distri-
butional similarity to the ground truth. Our analysis reveals that
these metrics exhibit discordant behavior with small constraint sets
but gradually converge as the constraint set expands. This phenom-
enon suggests that when constraints are sparse, multiple solutions
may satisfy the constraints while having substantially different
distributions. However, as the number of constraints grows, the
solution space contracts, ultimately converging toward the true
data distribution. This finding aligns with intuitive expectations
about constraint satisfaction problems.

o = = - PGM
\ oo

Cross Entropy

1925 %10

gl =2t ST \

Number of queries Number of queries

Figure 5: Cross entropy versus number of queries on a Census-
3D and b Wine-3D.

5 CONCLUSIONS

From our experiments, both SMT- and PGM-based approaches en-
counter exponential complexity growth as the query size increases,
indicating that they are only able to handle a small number of query
constraints with low error. In contrast, our model demonstrates
significant advancement by efficiently processing large-scale query
sets across diverse datasets while maintaining both controllable er-
ror bounds and computational efficiency. These results highlight its
potential as an effective approach in the field of synthetic database
generation.

REFERENCES

[1] Arvind Arasu, Raghav Kaushik, and Jian Li. 2011. Data generation using declara-
tive constraints. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data (Athens, Greece) (SIGMOD ’11). Association for Comput-
ing Machinery, New York, NY, USA, 685-696. https://doi.org/10.1145/1989323.
1989395

[2] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Ozsu. 2007. QAGen:
generating query-aware test databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data (Beijing, China) (SIGMOD ’07).
Association for Computing Machinery, New York, NY, USA, 341-352. https:
//doi.org/10.1145/1247480.1247520

[3] Paulo Cortez, Anténio Cerdeira, Fernando Almeida, Telmo Matos, and José
Reis. 2009. Modeling wine preferences by data mining from physicochemical
properties. Decision support systems 47, 4 (2009), 547-553. https://www.kaggle.
com/datasets/rajyellow46/wine-quality

https://doi.org/10.1145/1989323.1989395
https://doi.org/10.1145/1989323.1989395
https://doi.org/10.1145/1247480.1247520
https://doi.org/10.1145/1247480.1247520
https://www.kaggle.com/datasets/rajyellow46/wine-quality
https://www.kaggle.com/datasets/rajyellow46/wine-quality

=

[9

=

[10]

[11]

[12]

[13]

Leonardo Mendonca de Moura and Nikolaj S. Bjerner. 2008. Z3: An Efficient
SMT Solver. In International Conference on Tools and Algorithms for Construction
and Analysis of Systems. https://api.semanticscholar.org/CorpusID:15912959
Amir Gilad, Shweta Patwa, and Ashwin Machanavajjhala. 2021. Synthesizing
Linked Data Under Cardinality and Integrity Constraints. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China) (SIG-
MOD ’21). Association for Computing Machinery, New York, NY, USA, 619-631.
https://doi.org/10.1145/3448016.3457242

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Eric Lo, Nick Cheng, and Wing-Kai Hon. 2010. Generating databases for query
workloads. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 848-859. https://doi.org/10.
14778/1920841.1920950

Kolby Nottingham Markelle Kelly, Rachel Longjohn. [n.d.]. UCI Machine Learn-
ing Repository. https://www.kaggle.com/datasets/uciml/adult-census-income
Accessed: 2024-09-26.

Petar Veli¢kovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, lan Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261-272.
https://doi.org/10.1038/s41592-019-0686-2

Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: a nor-
malizing flow based cardinality estimator. Proc. VLDB Endow. 15, 1 (Sept. 2021),
72-84. https://doi.org/10.14778/3485450.3485458

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Jingyi Yang, Peizhi Wu, Gao Cong, Tieying Zhang, and Xiao He. 2022. SAM:
Database Generation from Query Workloads with Supervised Autoregressive
Models. In Proceedings of the 2022 International Conference on Management of Data
(Philadelphia, PA, USA) (SIGMOD °22). Association for Computing Machinery,
New York, NY, USA, 1542-1555. https://doi.org/10.1145/3514221.3526168

Chun Wang, Wanning He, and Changwen Xu

https://api.semanticscholar.org/CorpusID:15912959
https://doi.org/10.1145/3448016.3457242
https://doi.org/10.14778/1920841.1920950
https://doi.org/10.14778/1920841.1920950
https://www.kaggle.com/datasets/uciml/adult-census-income
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.14778/3485450.3485458
https://doi.org/10.1145/3514221.3526168

Graph Based Database Generation from Query Constraints

APPENDIX

We provide the comparison of ground truth and predicted node
values by GCN in Figure 6. The model is trained on Census-3D for
visualization. The MSE loss is decreased to around 0.0009 on the
training set.

Ground Truth

Model Prediction

0.0 02 0.4 0.6 0.8 1.0
Node Values

Figure 6: 3D CDF distribution of GCN model predictions
(right) compared to ground truth CDF (left), ascending along
both axes.

We summarize the Q-Error results on Census-3D (Table 4), Wine-
2D (Table 5) and Wine-3D datasets (Table 6). Similar to observations
for Census-2D, GCN model remains robust for query sizes over 103
where the baseline model fails to find the solution and achieves
reasonable accuracy in the meantime.

Table 4: Q-Error on Census-3D: SMT and PGM use full queries,
whereas GCN is only trained on 80% of the queries and the
remaining 20% are used for testing its generalization perfor-
mance.

Model Query Median 75th 90th Mean

SMT 10! 10340 12155 572.0603 571.9038
102 10000 1.0308 11784 2.1677
10! 12005 17610 2.6761 1.5646

PGM
10% / / / /
10! 27234 36430 39893 2.8527
102 62615 82031 19754 27.000

GCN (trai

(train) 103 38858 5.6700 13.927 10.281

104 459 10220 30729 25838
100 56465 82232 97.693 56.465
2

GoN(tesy 1 57325 7.2637 83241 6.3883

103 4.0602 63978 15319 7.5972
10 47351 10459 28945 18.119

Table 5: Q-Error on Wine-2D: SMT and PGM use full queries,
whereas GCN is only trained on 80% of the queries and the
remaining 20% are used for testing its generalization perfor-
mance.

Model Query Median 75th 90th Mean
SMT 10! 13077 27748 39.1238 10.1069
102 11046 11867 13194 1.2114
10! 14502 2.2570 9.6327 7.6497

PGM)
10 11206 1.0032 11938 1.2402
10! 10948 12081 1.9873 14134
102 14740 16571 25245 7.2230
. 10° 19131 28824 6.0360 4.8958
GON(train) 04 19576 33121 76255 6.5007
105 18768 3.0470 64983 55147
106 1.8727 3.0169 6.4249 5.4407
100 33665 50432 60493 336.65
102 14795 1.6923 3.0038 14.907

3
GoNGesy 10 1.8898 3.2555 9.2614 5.6107

104 1.9742 3.4045 7.7412 9.2515
10° 1.8655 3.0140 6.6393 5.5164
106 1.8732 3.0138 6.2645 5.3442

Table 6: Q-Error on Wine-3D: SMT and PGM use full queries,
whereas GCN is only trained on 80% of the queries and the
remaining 20% are used for testing its generalization perfor-
mance.

Model Query Median 75th 90th Mean
SMT 101 1.3679 1.7120 30.5500 16.3567
102 1.1470 1.2579 1.9913 1.6046
10! 1.2412 1.7407 1.8975 1.4827
PGM
10 / / / /
10! 45298 97927 47.794 21337
102 10.618 16.216 48.002 34.167
3
GCN (train) 104 15.538 27.057 54.413 47.277
10 37.361 58.475 105.59 71.760
10° 48.930 73.799 130.66 88.229
10° 48.965 73.829 12993 88.069
10! 3.0172 3.4408 3.6949 3.0172
102 8.5471 9.9991 12.015 9.4349
3
GCN (test) 10 15.623 29.032 58.115 33.108

10 37.545 54368 104.47 68.390
10° 49.024 73.799 12991 87.134
100 49.065 73.829 13030 87.835

	1 Problem Description
	1.1 Motivation
	1.2 Inputs/Outputs
	1.3 Challenges and Contributions
	1.4 Task Allocation

	2 Reference/Related work
	2.1 Previous Researches
	2.2 New Model and New Approach in Our Work

	3 Methodology
	3.1 Datasets
	3.2 Data Preprocessing
	3.3 GCN Model Architecture

	4 Experiments
	4.1 Preparation
	4.2 Evaluation Metrics
	4.3 Baseline Models
	4.4 Evaluations

	5 Conclusions
	References

